Lindsey Adams
Graduate Student
Programing vaccine antibody responses
The Lingwood lab studies vaccine ‘resistant’ pathogens such as influenza virus and HIV, which often trigger non-protective antibody responses. The goals of our laboratory are to define the molecular decision-making rules that the immune system uses to establish antibody targets and to apply vaccines that rework these rules to refocus antibody attention upon the conserved ‘Achilles heels’ of these viruses.
The Lingwood Lab’s research centers on defining how fundamental principles of B cell antigen recognition control epitope-targeting by the antibodies elicited by vaccines. We have described how gene-encoded antigen ‘pattern’ recognition motifs exist within the human antibody repertoire through this work. Our research centers on defining how fundamental principles of B cell antigen recognition control epitope-targeting by the antibodies elicited by vaccines. We have defined how gene-encoded antigen ‘pattern’ recognition motifs exist within the human antibody repertoire and can, within purpose-built humanized mouse systems, serve as natural substrates for refocusing humoral immunity upon ‘universal’ vaccine targets on influenza virus, HIV, and gram-negative bacteria. We have also recently described a biological buffer system which sets the circulating level of interleukin-6 (IL-6) to regulate the output of these antibody responses and more broadly, innate immune reactions. Using a series of genetic models to manipulate the buffer-system in vivo, we now demonstrate that coordinated shifts in the buffer equilibrium regulate pro-inflammatory IL-6 signaling to enable novel anti-viral immunity at the respiratory surface.
Lab WebsitePrincipal Investigator
Daniel’s training has been at the interface of cell surface communication and membrane structure and function—an education that has engendered a unique perspective on solving vaccinology problems. Daniel has defined how key features of 2D molecular interactions in the membrane plane enable natural pattern recognition by human BCRs. He and his lab now demonstrate this principle serves as a natural substrate for vaccine-amplifying broadly protective anti-viral and anti-bacterial humoral responses in humanized mice.
Immunity, 2024 57:1141–1159
Nature Communications, 2023 14:5249
Immunity, 2022 55:1693-1709
Immunity, 2021. 54:235-246
Cell Reports, 2020. 32:108065
Immunity, 2019. 51:1-15
Nature Protocols, 2016. 11:193-213
Nature, 2012. 489:566-570
Graduate Student
Research Technician I
Research Technician II
Research Fellow
Research Scientist
Graduate Student
Research Scientist